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The problem of neural coding in perceptual decision making revolves
around two fundamental questions: (i) How are the neural represen-
tations of sensory stimuli related to perception, and (ii) what at-
tributes of these neural responses are relevant for downstream
networks, and how do they influence decision making? We studied
these two questions by recording neurons in primary somatosen-
sory (S1) and dorsal premotor (DPC) cortex while trained monkeys
reported whether the temporal pattern structure of two sequential
vibrotactile stimuli (of equal mean frequency) was the same or differ-
ent. We found that S1 neurons coded the temporal patterns in a
literal way and only during the stimulation periods and did not reflect
the monkeys’ decisions. In contrast, DPC neurons coded the stimulus
patterns as broader categories and signaled them during the working
memory, comparison, and decision periods. These results show that
the initial sensory representation is transformed into an intermediate,
more abstract categorical code that combines past and present infor-
mation to ultimately generate a perceptually informed choice.
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From the most stereotyped behavior of invertebrates to the
most elaborate behavior of primates, a central issue in neu-

robiology is elucidating how sensory information is represented
in neural circuits and how it is used to generate actions. In
principle, this process can be understood as a chain of three basic
neuronal operations. The representation of the physical/chem-
ical attributes of the environment and the execution of motor
commands can be regarded as the end points of this chain of
neuronal operations. In the middle of this chain is a crucial
processing step in which the sensory representations are ana-
lyzed and transformed in such a manner that the nervous system
is able to choose the adequate motor action.
We have investigated this chain of processes by analyzing the

neuronal activity of parietal and frontal cortices in trained monkeys
performing a vibrotactile frequency discrimination task (VFDT;
reviewed in refs. 1–3). In this task, monkeys compared the fre-
quencies of two vibratory stimuli applied sequentially to the skin of
one fingertip and then used their free hand to push one of two
response buttons to indicate whether the second stimulus frequency
(f2) was lower or higher than the first stimulus frequency (f1). The
VFDT, although apparently simple, is designed so that it can only
be executed when a minimum number of neuronal operations or
cognitive steps are performed: coding f1, holding f1 in working
memory, comparing f2 with the memory trace of f1, and, finally,
executing a motor response to indicate whether f2 > f1 or f2 < f1.
Thus, the VFDT allowed us to investigate a wide range of essential
neural processes during perceptual decision making (1–3). However,
the VFDT poses a fundamental problem:What is the neural code(s)
that an observer might use to decide whether f2 > f1 or f2 < f1?
The initial hypothesis was that an observer discriminated be-

tween the two stimulus frequencies by comparing the differences

in the time intervals of the corresponding evoked neuronal re-
sponses (4, 5). Indeed, neurons from the primary somatosensory
cortex (S1) respond to a wide range (5–40 Hz) of stimulus fre-
quencies by phase-locking their spikes to the mechanical sinu-
soids (5–8). Thus, an observer could discriminate between two
frequencies by directly computing the difference in the time in-
tervals of the spikes produced in S1 (temporal code). However,
the mean firing rate also varies as a function of stimulus fre-
quency (intensive code). This happens not only for many of the
S1 neurons that show phase-locked responses but also for a
subset of S1 neurons (approximately a third) that lack the
prominent phase-locked responses (6, 8). The simple firing rate
code (intensive code) suffices for discriminating the two stimulus
frequencies to the level of accuracy demonstrated behaviorally
(6–8). Moreover, in areas downstream from S1 the phase-locked
responses are virtually nonexistent; instead, a simple firing rate
code is used to represent stimulus frequency during the stimu-
lation, working memory, and comparison periods of the task
(1–3). In addition, animals are able to discriminate the mean
frequencies of aperiodic stimuli with discrimination thresholds
almost identical to those obtained with periodic stimuli (6–10).
Neurometric thresholds calculated from the mean firing rates
evoked by periodic and aperiodic stimuli are essentially identical
and are tightly correlated with psychophysical performance (6–
8). The conclusion is that a simple firing rate code is sufficient
for frequency discrimination across task variants and cortical
areas. Thus, stimulus frequency is initially represented via a temporal
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code by the S1 population, but this signal is thereafter transformed
into an intensive code (1–3).
However, there are behavioral conditions in which knowledge

of the temporal structure of the stimulus pattern is essential. Here,
we focused on this problem. For this, we modified the VFDT (11,
12). In the new task, we sequentially delivered two vibrotactile
stimuli of equal average frequency, so the discrimination could not
be based on an intensive code for mean frequency. Another key
modification, relative to the VFDT, is that the monkeys were
asked to indicate whether the two vibrotactile patterns were the
same or different. In each trial (Fig. 1), monkeys pay attention to
the first stimulus pattern (P1) and hold it in working memory, then
compare the second stimulus pattern (P2) against P1, and after
another delay between P2 and probe up indicate whether P2 was
the same (match, P2 = P1) or different (nonmatch, P2 ≠ P1) than
P1 by pressing one of two push buttons. Thus, in this task, the
animals discriminate the two stimulus patterns based on their
temporal configurations (temporal code).
We hypothesized that S1 (area 3b) neurons faithfully represent

the temporal pattern configurations and that their mean firing rates
are similar across stimuli, so that an intensive code is out of the
picture. We also hypothesized that S1 neurons code the temporal
patterns during stimulation only, and not during the working-
memory, comparison and delay-decision, and response periods, as
in the VFDT (1–3, 13). Here, we confirmed these two hypotheses
by analyzing the neuronal responses of S1 while monkeys per-
formed the temporal pattern discrimination task (TPDT). Fur-
thermore, if S1 serves to represent the stimulus features only but
does not encode the cognitive components of the task, the question
is, Where and how in the cerebral cortex are the stimulus patterns
coded during the working memory, comparison, and decision pe-
riods? We chose the dorsolateral premotor cortex (DPC) because it
has been previously associated with the encoding of sensory features

during those periods in the VFDT (13). During the experiment, we
recorded single neurons in DPC while the monkey performed the
TPDT. We found groups of DPC neurons that reflected the rele-
vant categories in which the temporal patterns fell. Neurons dis-
played a categorical representation of P1, both during the first
stimulation period and during the delay between P1 and P2, as well
as a categorical representation of the result of the comparison,
which was maintained until the end of the delay between P2 and the
decision motor report. Contrary to S1, the activity of DPC neurons
was strongly indicative of the animal’s errors and virtually dis-
appeared during a visual control task in which the same stimulus
pairs were delivered, but the animal was cued in advance about
which push button to press for reward. These results indicate that
there is a dramatic transformation of the neural code: from a
faithful temporal representation of the stimulus in S1 that is in-
sensitive to task contingencies, to a binary representation of the
choice in DPC, via a distinct categorical code, also in DPC, that is
highly invariant to irrelevant stimulus features and strongly corre-
lates with the animal’s decisions.

Results
Two monkeys (Macaca mulatta) were trained to report whether
two patterns composed of vibrotactile flutter stimuli were the
same or different (Fig. 1A and SI Materials and Methods). Over
their full duration (1 s), the patterns had equal mean frequency. In
each trial, monkeys paid attention to the first pattern, P1, stored a
trace of it during the delay between P1 and P2, and compared that
stored trace to the second pattern, P2. Then, after another delay
period during which the comparison between P2 and P1 had to be
remembered, the monkey pressed one of two push buttons to
indicate whether P2 = P1 (match) or P2 ≠ P1 (nonmatch). For
each fixed number of pulses (or fixed mean frequency) there were
two distinct patterns (Fig. 1A), grouped (G) and extended (E), and
thus four possible same/different stimulus pairs. Each of the four
possible pattern combinations in a block of trials with fixed mean
frequency is called a class, and classes were pseudorandomly in-
terleaved with the same probability (P = 0.25). Because we used a
fixed delay period between P1 and P2, monkeys could anticipate
the time of delivery of P2, but not whether P2 = P1 or P2 ≠ P1,
which had equal probabilities. Monkeys performed the TPDT in
blocks of trials with fixed numbers of mechanical pulses (3, 5, 6, 7,
10, or 15) delivered in 1 s (Fig. 1A). Thus, for example, the pat-
terns with five pulses had a mean frequency of 5 Hz (Fig. 1A). The
success rates of the monkeys, measured as percentages of correct
discriminations, were highly consistent across mean frequencies
(Fig. 1B) and across stimulus patterns G or E. Given this task
design, the neuronal responses (S1 and DPC) across trials can be
analyzed as functions of P1, P2, P2 = P1 vs. P2 ≠ P1, or as
functions of the monkeys’ two possible motor choices.

S1 Responses During the Pattern Discrimination Task. We recorded
from 169 single neurons in S1 (area 3b, Fig. 1C) while monkeys
performed the TPDT. All of those neurons had small cutaneous
receptive fields on the distal segment of one fingertip. Each S1
neuron was classified according to its adaptation properties (14).
The majority of those neurons had quickly adapting (QA) re-
sponses (n = 161, 95.2%) and only a few showed slowly adapting
(SA) properties (n = 8, 4.8%). Because they were the over-
whelming majority, and their signals were more informative (8,
14), we focused the analysis on the QA population. First, we
investigated their stimulus encoding properties during task per-
formance; second, we determined their pattern discrimination
capacities; and third, we examined whether they reflected in
their activities the animal’s discrimination performance.
Fig. 2A shows the responses of a typical S1 neuron. The neuron

was entrained by the vibrotactile stimulus patterns, but beyond
that, notice that there was no sign of any firing rate modulation
associated with the working memory, comparison, or postponed
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Fig. 1. TPDT and recording sites. (A) Sequence of events in each trial. The
mechanical probe is lowered (pd), indenting (500 μm) the glabrous skin of one
fingertip of the right, restrained hand; the monkey places its free hand on an
immovable key (kd). After a variable delay (2–4 s), the probe oscillates verti-
cally, generating one of two possible stimulus patterns [P1, either grouped
pulses (G) or extended pulses (E); individual mechanical pulses lasted 20 ms; 1 s
of stimulus duration]. After a fixed delay (memory delay, 2 s), a second stimulus
is delivered, again at two possible pattern configurations (P2, either G or E; 1 s
of stimulus duration); after a second fixed delay (decision delay, 2 s) between
the end of P2 and the probe up (pu), the monkey releases the key (ku) and
presses with its free hand either the lateral or medial push button (pb) to in-
dicate whether the P1 and P2 were the same or different. P1 and P2 always
had equal mean frequency. (B) Discrimination performance for each block of
trials of equal mean frequency. Each block consisted of four possible combi-
nations of patterns, as illustrated in A. (C) Top (Left), lateral (Top Right), and
coronal (Bottom Right) views of the brain locations where single neurons were
recorded. Recordings were made in area 3b of S1 (contralateral to stimulated
finger, gray spots) and in dorsal premotor cortex (DPC, both hemispheres,
contralateral and ipsilateral to the stimulated finger, orange spots).

Rossi-Pool et al. PNAS | Published online November 21, 2016 | E7967

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
9,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618196113/-/DCSupplemental/pnas.201618196SI.pdf?targetid=nameddest=STXT


www.manaraa.com

decision-report periods of the task. For each of the four classes of
stimulus pairs (Fig. 2B) the firing patterns of the example neuron
were similar to those observed in the normalized population ac-
tivity [latency for P1 and P2: 23.6 ± 3.8 ms (SD) and 24.8 ± 4.4 ms,
respectively]). Strong entrainment was evident for all mean fre-
quencies (3–15 Hz; Fig. S1 A–C). Thus, in general, the S1 spike
trains seemed to faithfully track the internal temporal structure of
the stimulus patterns throughout the frequency range.
To test this quantitatively, we first measured the mean firing rates

evoked by the stimuli throughout the entire stimulation period (1 s)
and for each mean stimulation frequency compared the results
across pattern identities (G vs. E, Fig. 3). We found that the firing
rates evoked by the two types of pattern were statistically identical
(Fig. 3A; note that most points fall near the diagonal line: left panel,
46.4 ± 5.7° for the P1 interval and right panel, 45.1 ± 6.5° for the P2
interval; Kolmogorov–Smirnov, P > 0.05). This means that, for an
ideal observer, it would be impossible to discriminate between
temporal patterns, G vs. E, based on the S1 mean firing rates cal-
culated over the entire stimulation periods.
Next, we considered whether such an observer would be more

successful if she/he considered the finer temporal structure of the
neural responses. Thus, we calculated Shannon’s mutual infor-
mation for each neuron using time windows of different lengths
(from 50 ms to 1,000 ms in steps of 50 ms). We then averaged the
pattern information across all neurons to obtain the mean pop-
ulation information for each window. This analysis further showed
that the mean firing rate computed over the entire stimulation
period (1,000 ms) was, in fact, the least informative (Fig. 3B).
However, the mean population information reached a maximum
value when the window was ∼ 200 ms wide (Fig. 3B). This raises the
question of whether the 200-ms window carries the same amount of
information independently of its temporal position, or whether
there is a particular point at which the information is highest (e.g.,
beginning, middle, or end of the stimulation period). To address
this, we used a deterministic window of 200 ms displaced in con-

secutive 10-ms steps and computed the average population in-
formation about patterns P1 (cyan) and P2 (light green) as a
function of time (Fig. 3C). Notably, the variations of this metric over
time were virtually identical for the two periods, P1 and P2. In-
formation about pattern identity began to rise 240 ± 55 ms after
stimulus onset (coding latency), and thereafter it varied non-
monotonically. The most informative point in time was 340 ± 75 ms
after stimulus onset. These results suggest that, if an observer
computed the S1 firing rate using an appropriately chosen time
window, she/he would be able to determine the identity of the
stimulus pattern with relatively high accuracy, albeit only during the
stimulation periods.

S1 Stimulus Pattern Discrimination As a Function of Time. To further
test this hypothesis, we measured the discrimination capacities of S1
neurons as functions of time (SI Materials and Methods). We found
that firing rates are different for patterns G and E during P1 and P2
but similar for the same stimuli across time periods. The coding
capacity of each S1 neuron was assessed by performing a time-de-
pendent firing rate analysis for each trial using different sliding
windows (from 50 ms to 1,000 ms stepping every 50 ms), as before
(Fig. 3B). At each time bin, and using hit trials only, we constructed
firing rate distributions for each stimulus class: c1, G-G; c2, G-E; c3, E-
G; and c4, E-E. Then, to identify class-differential responses as
functions of time, we computed the area under the receiver oper-
ating characteristics curve (AUROC; ref. 15) for the six possible class
comparisons: c1-c2, c1-c3, c1-c4, c2-c3, c2-c4, and c3-c4 (Fig. 4). This
analysis produced a binary code for each bin composed of six binary
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Fig. 2. S1 responses during the pattern discrimination task. (A) Raster plots
of one representative neuron during TPDT consisting of five pulses delivered
in 1 s. Each row of ticks is one trial, and each tick is an action potential. Trials
were randomly delivered but have been sorted into four pattern combina-
tions of 20 trials each. Stimulus patterns are shown at the top of each row
with the following color code: class 1 (red, G-G), class 2 (orange, G-E), class 3
(green, E-G) and class 4 (blue, E-E). Traces below the raster plots are peri-
stimulus time histograms (constructed with time window of 50 ms displaced
every 10 ms). (B) Normalized population activity from n = 161 neurons.
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Fig. 3. Comparison of S1 responses across temporal patterns. (A) Firing rate
elicited by pattern G (x axis) is compared against firing rate evoked by pattern
E (y axis). Each dot corresponds to one neuron tested (n = 161). Diagonal line
(45°) indicates equality between x and y axes. Inset histograms show angular
distributions for stimulus P1 (Left) and P2 (Right). (B) Mean pattern in-
formation carried by S1 neurons, measured in bits (SI Materials and Methods),
as a function of window size (50–1,000 ms in steps of 50 ms) during P1 (Left,
cyan) and P2 (Right, light green). (C) Mean pattern information as a function
of time (window size was 200 ms). Optimal integration time was 340 ms from
stimuli onset. (D) Percentage of S1 neurons with significant pattern in-
formation during P1 (cyan) and P2 (light green) as a function of window size.
Optimal integration window was 200 ms for both stimuli.
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digits resulting from the six comparisons (SI Materials and Methods).
Each time bin was tested for classification into one of four possible
coding profiles during the task (P1, P2, class selective, or decision
coding). For example, for P1 coding, the responses must be similar
for classes c1 and c2, and for c3 and c4, which have the same P1, but
must differentiate between all other class comparisons, which have
different P1 patterns (binary code: 0-1-1-1-1-0).
Using this new procedure, we calculated the percentage of S1

neurons with significant P1 (cyan) or P2 (light green) coding (Fig.
3D; see also Fig. 4). Notably, we verified that the 200-ms time
window was indeed the optimal one for decoding the stimulus
pattern (note same peak locations in Fig. 3 B and D). By using this
procedure with the optimal window length for all of the recorded S1
neurons beginning 1 s before P1 up to the end of the trial (1 s after
push button press), we constructed a plot tracking how the stimulus
encoding varied over time (Fig. 5 A and B). This simple procedure
showed that S1 neurons discriminate between stimulus patterns
exclusively during the stimulation periods. Moreover, a similar
coding response was found during the light control task (Fig. 5C), in
which the same stimulus pairs were delivered but the animal knew
in advance which push button to press to obtain its reward (SI
Materials and Methods). Thus, S1 discriminates between stimulus
patterns whether or not the monkey uses that sensory information
to guide its choice.

S1 Responses Do Not Covary with Perceptual Judgment. To further
document the conclusion reached above, we compared the re-
sponse patterns evoked during hits (Figs. S1 A–C and S2A) and
error trials (Figs. S1 D–F and S2B). We found no statistical
differences between the respective responses based on mean
squared errors (variations of 0.5–1.5% for each stimulus class).
The responses were indistinguishable from those in the light
control task as well (Fig. S2C). We also quantified whether the
activity of S1 neurons predicted the animal’s choice using choice
probability (16) (SI Materials and Methods). The results indicated
that there were no significant differences between hits and errors
for any stimulus class (Fig. 5D). Thus, we conclude that S1 re-
sponses encode the stimulus patterns accurately, but only during

the stimulation periods and regardless of the monkey’s perfor-
mance. Therefore, there must be an area (or multiple areas)
downstream from S1 that not only represents the temporal
patterns throughout the task duration but also is consistent with
the animal’s discrimination performance. Next, we describe neu-
ronal codes that have those properties.

Pattern and Choice Coding in DPC Neurons. A large number of the
recorded DPC neurons (1,473 of 1,574, 93.5%) significantly
changed their firing rates during at least one of the relevant periods
of the task compared with a control period preceding the beginning
of each trial (P < 0.05, Wilcoxon rank-sum test; ref. 17). Out of the
1,473 responsive neurons, 1,238 (84%) were found, based on off-
line statistical tests, to have firing rates that varied significantly with
the relevant task variables (Fig. 4 and SI Materials and Methods).
These 1,238 neurons were recorded in both hemispheres of the two
trained monkeys (398 recording sessions; approximately three
neurons per session, on average). Response coding classification
was based on the same procedures used for S1 (Fig. 4 and SI Ma-
terials and Methods). The examples in Fig. 6 and Figs. S3 and S4
illustrate typical DPC activity, with horizontal lines below raster
plots indicating the time periods of significant coding and line color
indicating which signal was encoded (Fig. 4).
In contrast to S1, DPC displayed a large repertoire of neu-

ronal responses associated with one or several of the relevant
task components. For example, some neurons responded selec-
tively during P1 to pattern G (Fig. 6A and Figs. S3 A–D and S4A)
or to pattern E (Fig. 6B and Fig. S3D). We refer to these re-
sponses as P1 coding (horizontal cyan line below raster plots;
cyan profile in Fig. 4). In the case of the example neuron of Fig.
6A (P1 coding for pattern G in c1 and c2), the firing rate began
increasing during P1 and maintained its high level during the
delay period between P1 and P2 until about the middle of P2
(horizontal cyan line). The example neuron of Fig. 6B had similar
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columns), coding the decision partially (same or different but distinguishing
between E-G and G-E combinations, or between E-E and G-G combinations;
ninth and 10th columns), and coding the complete decision [same (P1 = P2) or
different (P1 ≠ P2); 10th column].
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probability for the same population of S1 neurons (n = 161).
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properties but preferred pattern E (c3 and c4). In some of the
error trials (purple raster plots in Fig. 6A and Figs. S3 A–D and
S4A), the strong activation evoked by pattern G during hit trials
disappeared during the delay period, and, likewise, intense activity
was seen during this period when the animal erroneously judged
the first stimulus pattern as E instead of G in classes c3 and c4
(purple raster plots). The neurons that coded pattern E showed a
similar switch in activity (Fig. 6B and Fig. S3C). Thus, these
neurons selectively coded patterns G or E between the first and
second stimulation periods, and their activity correlated with the
monkey’s behavior.
In total, 793 (64% of 1,238) DPC neurons showed P1 coding

during a period of at least 200 ms. Horizontal cyan lines in Fig.
7A indicate significant P1 coding for each neuron, and the cyan
trace in Fig. 7B shows the corresponding percentage of signifi-
cant neurons as a function of time. Among them, 430 (54.2% of
793) coded pattern G, 296 (37.3% of 793) coded pattern E, and
67 of these (8.4% of 793) switched from coding one pattern to
another pattern (48 switched from pattern G to pattern E, 71.6%
and 19 switched from pattern E to pattern G, 28.3%), as illus-
trated for the example neuron in Fig. S3D. To appreciate how
these numbers and their corresponding percentages changed
over time, we quantified them in intervals of 1 s, beginning from
P1 up to the end of the task. During P1 (0 s to 1 s), 505 neurons
coded the stimulus patterns (353 for pattern G, 69.9% and 152

for pattern E, 30.1%). This means that, during this period, the
population showed a preference for pattern G over pattern
E—but this preference changed gradually. During the first sec-
ond between P1 and P2 (1 s to 2 s), 489 neurons coded the
stimulus patterns (318 for pattern G, 65% and 171 for pattern E,
35%). During the last second of the delay (2 s to 3 s), 363
neurons coded the stimulus patterns (200 for pattern G, 55.1%
and 163 for pattern E, 44.9%). Finally, during P2 (3–4 s), 388
neurons coded the pattern shown during P1 (189 for pattern G,
48.7% and 199 for pattern E, 51.3%). After P2, the number and
percentage of neurons coding the P1 stimulus collapsed almost
to zero. This shows that the preference for pattern G wanes over
the delay period, such that the numbers of neurons preferring
patterns G and E become essentially identical by the end of P2.
Notably, in contrast to the P1 coding, we found few neurons that
coded the patterns G and E delivered during the second stimu-
lation period, P2 (105 of 1,238, 8.5%), and none of them showed
persistent activity during the delay period between the end of P2
and pu (light green lines in Fig. 7 A and B). These results in DPC
contrast with those obtained in S1, where the percentages of
neurons coding P1 and P2 were essentially identical (Fig. 5B).
In addition to these types of sensory representation, DPC neu-

rons showed class-selective responses (see Fig. 4 for class types; pink
traces in Fig. 7 A and B). By definition, class-selective coding refers
to each P1 and P2 combination of stimulus patterns, so it occurred
only during P2 and between P2 and pu. Class-selective coding was
more frequent (959 of 1,238, 77.4%) than P1 coding (793 of 1,238,
64%). Class-selective neurons were almost equally distributed
across the four possible classes (class 1, n = 241, 25.1%; class 2, n =
219, 22.8%; class 3, n = 263, 27%; and class 4, n = 236, 24.6%; Fig.
7D). This categorical code was also very stable (Fig. 7 C and D):
The class-selective responses began during P2 with a high per-
centage of neurons and decreased thereafter. Furthermore, in some
of the error trials (purple rasters), the class coding observed during
hit trials disappeared (see also c3 in Fig. S3A, c1 in Fig. S4B, and c2
in Fig. S4C), whereas in other error trials it surfaced when the
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Fig. 6. Single neuron activity in DPC during the pattern discrimination task.
(A–D) Raster plots of four example neurons sorted according to the four
possible combinations of G and E stimulus patterns delivered during P1 and
P2. The resulting four classes are c1 (G-G, red), c2 (G-E, orange), c3 (E-G,
green), and c4 (E-E, blue). Each row of ticks is one trial, and each tick is an
action potential. Trials were randomly delivered and were sorted by class
afterward (only 10 out of 20 trials per class are shown). Correct and incorrect
trials are indicated by black and purple ticks, respectively. Horizontal colored
bars below rasters indicate times at which the neurons carried a significant
signal (Fig. 4) encoding the pattern presented during P1 (cyan), the pattern
presented during P2 coding (light green; not shown here), the class (pink),
the decision partially (light orange), or the complete decision (black).
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animal erroneously judged the true category as the cell’s preferred
category (c4 as c3 in Fig. 6C, c1 as c3 in Fig. S4B, and c2 as c1 and
c4 in Fig. S4C). Thus, the activity of class-coding neurons was often
predictive of the monkey’s performance (correct vs. incorrect, dis-
cussed below). These results contrast sharply with those obtained in
S1, where we did not find a single class-selective neuron.
Besides coding for specific stimuli and classes, DPC neurons also

reflected the monkey’s decision, that is, whether P2 = P1 or P2 ≠
P1. This type of coding was labeled with horizontal black and light
orange lines below rasters (see also black and light orange entries in
Fig. 4). Example neurons showing this type of coding are in Fig. 6 A,
B, and D and Figs. S3 B–D and S4A. As for the class-selective
coding, the responses encoding the decision began during P2 or
during the delay period following P2. We identified 701 (56.6% of
the 1,238) neurons with decision coding (horizontal black and light
orange lines and traces in Fig. 7 A and B). Decision-coding neurons
could be of three types: those that coded the decision fully, con-
sistently selecting either P2 = P1 or P2 ≠ P1 without any further
distinction (n = 513, 73.2%); those that coded it partially, selecting
P2 = P1 or P2 ≠ P1 but preferring one class combination over
another (n = 139, 19.8%); and a minority that coded it in both ways
at different times (n = 49, 7%). Thus, the complete-decision re-
sponses were more common than the partial ones. Fig. S3C shows
an example neuron with partial decision coding (light orange line
below rasters). It fired weakly for P2 ≠ P1 (without distinguishing c2
vs. c3) and much more intensely for P2 = P1, but it distinguished
statistically between c1 and c4 within the P2 = P1 condition. We will
show below that the partial and complete decision codes have the
same properties in regard to hit vs. error trials. Combining both
types of neurons (n = 701), we found that 323 (46.1%) coded P2 =
P1, 340 (48.5%) coded P2 ≠ P1, and 38 (5.4%) switched between
P2 = P1 and P2 ≠ P1 (Fig. 7 A and B). In terms of their temporal
distribution, note that the number of complete-decision responses
increased during the motor report period (black trace in Fig. 7B).
As for the P1 and class-selective codes, the complete and partial
decision codes faltered during error trials when the animals made
the nonpreferred decision instead of the preferred one (Fig. 6 B and
D, P2 = P1 preferred response drops during c1 and c4 errors; Fig.
6A and Fig. S3B, P2 ≠ P1 preferred response drops during c2 and c3
errors). Conversely, for the same neurons, the responses changed in
the opposite direction during error trials in which the monkeys
reported the preferred decision instead of the nonpreferred one (c2
and c3 in Fig. 6 B and D; c1 and c4 in Fig. 6A and Fig. S3B).
The results described above were obtained with the stimulus

patterns of 5 Hz mean frequency. A key question is whether the
dynamics described above are affected by stimulus frequency (Fig.
1B). To answer this, many of the neurons were also tested with
other stimulus frequencies (3 Hz, n = 204; 6 Hz, n = 265; 7 Hz, n =
207; 10 Hz, n = 145; and 15 Hz, n = 206). Fig. S4 shows example
neurons whose coding profiles remained almost identical when
probed with the different stimulus frequencies (note colored bars
below rasters). We found that 72% of the neurons tested with more
than one frequency maintained their coding profiles. Furthermore,
when considering the coding dynamics of the whole population (Fig.
7B, 5 Hz), we found that large variations in mean frequency had a
minimal effect on the coding profiles over time (Fig. 8 F–J, mean
stimulus frequencies of 3–15 Hz). It is also worth noting that the
monkeys were not retrained for these additional experimental runs.
They were able to perform the task with the additional frequencies
from the very first sessions. These results indicate that the repre-
sentation of stimulus patterns found in DPC is rather abstract.

Response and Coding Latencies in DPC. We calculated the response
latencies for DPC neurons (using data collected with 5 Hz) during
the task, that is, the times at which their activities increased signif-
icantly above baseline (SI Materials and Methods). During the P1
period, we focused on the neuronal population with P1 coding (Fig.
7B). We found that the mean response latencies for the populations

that coded pattern G (251 ± 148 ms) and pattern E (248 ± 137 ms)
were indistinguishable, indicating that they did not depend on
pattern identity. Thus, for P1, the response latency in DPC was
much higher and more variable than in S1 (23.6 ± 3.8 ms). We also
considered the latencies of the earliest DPC responses during P1
(approximately the fastest 10%) and again did not find significant
differences between the populations that coded patterns G (103 ±
32 ms) and E (105 ± 35 ms).
These measures quantify how quickly the DPC neurons begin to

respond, but not when they start to code the stimulus patterns. We
found that, for the same neural population, the mean latency to P1
coding was much higher (616 ± 113 ms). Even for the fastest
neurons, the coding latency was higher (386 ± 46 ms) than the
response latency described above for the entire population. In
comparison, for the S1 neurons (Fig. 3C) the minimum time nec-
essary to discriminate pattern G vs. pattern E was ∼ 240 ms. This
means that the DPC neurons with the shortest coding latencies
needed ∼146 ms more than the minimal possible time to discrim-
inate between patterns. One potential concern here is that the
coding latency could vary depending on the mean stimulus fre-
quency used during the task. However, the latencies were statisti-
cally indistinguishable across stimulus frequencies (603 ± 124 ms for
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Fig. 8. Selectivity of DPC coding profiles. (A–D) Percentage of neurons with
a significant signal as a function of time (mean frequency of 5 Hz). Different
panels include different subsets of neurons selected according to their se-
lectivity. (A) Neurons significantly encoding the first pattern (cyan; n = 793).
A large percentage of these neurons were also selective for class (pink), but
very few encoded the second pattern (light green). Orange and black traces
indicate partial and complete coding of the decision, respectively. (B) Neu-
rons significantly encoding the second pattern (light green; n = 105). A large
percentage of these neurons were also selective for the first pattern (cyan)
and for class (pink), but few encoded the decision (orange, black). (C) Neurons
significantly encoding trial class (pink; n = 959). Many of these neurons also
encoded the first pattern (cyan), almost none encoded the second (light
green), and only a few encoded the decision (orange, black). (D) Neurons
carrying a complete, significant decision signal (black; n = 701). Many of these
neurons also encoded the first pattern (cyan) and the trial class (pink), and
virtually none encoded the second pattern (light green). (E) Selectivity during
the light control task. None of the neurons tested in this task (n = 462) showed
significant selectivity to any of the components of the TPDT. (F–J) Percentages
of neurons with significant encoding during blocks of trials with different
mean frequencies. Numbers of cells and mean frequencies are indicated. Note
similar selectivity profiles across frequencies.
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3 Hz, n = 53; 616 ± 113 ms for 5 Hz, n = 592; 610 ± 121 ms for
6 Hz, n = 130; 608 ± 126 ms for 7 Hz, n = 85; 598 ± 120 ms for
10 Hz, n = 64; and 611 ± 121 ms for 15 Hz, n = 89).
Focusing on the P2 period, we estimated the extinction latency of

P1 coding (see cyan trace in Fig. 7B). For each neuron, this latency
was defined as the latest time bin with P1 coding. For the neurons
that had significant P1 coding during P2, the mean extinction la-
tency was 520 ± 128 ms, calculated from the beginning of P2. Fi-
nally, we also calculated the latencies for other coding types during
P2. For class-selective coding (pink trace in Fig. 7B), on average it
was 601 ± 132 ms (the values were similar for each of the four
classes in Fig. 7D: c1, 614 ± 113 ms, n = 173; c2, 593 ± 123 ms, n =
157; c3, 608 ± 118 ms, n = 188; and c4, 605 ± 124 ms, n = 166) and
for the fastest 10% of the neurons it was 374 ± 48 ms. The mean
latency for P2 coding (light green trace in Fig. 7B) was 654 ± 128 ms,
and for decision coding (black and light orange trace in Fig. 7B) it
was 693 ± 140 ms (for the fastest 10% of the neurons it was 513 ±
49 ms). In summary, the coding latencies during P2 began with the
extinction of the P1 signal (working memory), followed by the ap-
pearance of class-selective coding, then by P2 coding, and finally by
coding of the decision itself.

DPC Coding Dynamics. Fig. 7B shows the coding profile of the entire
population as a function of time. However, this graph obscures
the combinatorial quality of the DPC responses, whereby neurons
convey different types of information at different points in time. Fig.
8A–D shows the coding dynamics in a similar format but for selected
groups of neurons that carried a given signal for at least 200 ms.
For instance, the neurons with significant P1 coding (n = 793, Fig.
8A) displayed P2, class, and decision coding during and after P2
and did so in proportions that were similar to those seen for the
entire population (Fig. 7B). Similar results were obtained for
profiles based on neurons with significant P2 coding (n = 105, Fig.
8B), class-selective coding (n = 959, Fig. 8C), and decision coding
(n = 701, Fig. 8D). Thus, there were no groups of DPC neurons
uniquely dedicated to coding single, specific components of the
task; each cell seemed to have been assigned multiple relevant
variables (pattern, class, and decision) at random.

DPC Responses During the Light Control Task. The DPC neurons carry
information that qualifies as sensory (i.e., about individual stimuli),
categorical (i.e., about combinations of stimuli or classes), and
decision-related (i.e., about the monkey’s perceptual evaluation). To
what extent are those neuronal signals dependent on the animal’s
active evaluation? Do they occur only during task execution, or are
they to some degree insensitive to the animal’s state? To answer these
questions, in addition to the standard test, many of the neurons (n =
462) with P1, class-selective, and decision coding were also tested in a
variant of the task in which identical stimuli were delivered but the
correct answer was provided by a visual cue (SI Materials and Meth-
ods). Under those conditions, DPC neurons no longer coded in-
formation about the stimulus patterns or their combinations (Fig. 8E
and Fig. S5 show that the four example neurons of Fig. 6 no longer
code the relevant task components during the control test). Fur-
thermore, note that the decision signal (Fig. 7B, after pu) was no
longer present either, even though the animals executed the same
movements in the two task conditions. Thus, contrary to S1, DPC
activity is strongly dependent on behavioral context and on the cog-
nitive processing of the discriminated stimuli. In particular, the de-
cision signal is not a simple, obligatory representation of the monkeys’
movements or their underlying kinematic parameters.

DPC Pattern and Class Coding During Hit and Error Trials. To determine
the degree to which the activity in DPC predicted the monkey’s
choice, we investigated whether, for each stimulus pair, the evoked
activity was somehow different between correct (hit) vs. incorrect
(error) trials. For this, we used the normalized activity (z-score) at
all time bins from the 1,238 neurons with significant coding (SI

Materials and Methods). For each type of coding, we divided the
normalized responses into hit and error trials and quantified
the neurometric discriminability of the relevant coded variable
by contrasting the normalized responses across stimuli within
each group. For instance, for the neurons with P1 coding, we found
that the responses associated with patterns G and E were very
different, and thus highly discriminable, during hit trials (Fig. 9A,
Left; P < 0.01, ROC test). However, in error trials (Fig. 9A, Right),
the two response distributions corresponding to patterns G and E
(same color traces as for Fig. 9A, Left) were statistically indis-
tinguishable (P > 0.1). These results were consistent across time
(Fig. S6A). Thus, when the monkey made a mistake, the distinc-
tion that the DPC neurons were expected to make became much
more blurry.
To evaluate the error effect in P2 coding neurons, we com-

bined the data from the two classes that shared the same pattern
(c1 and c3 for pattern G and c2 and c4 for pattern E) because
there were too few error trials to analyze each individual class
separately. However, the results were qualitatively the same as
for P1 coding (Fig. S6B): The responses associated with different
patterns were highly discriminable in correct trials (P < 0.01), but
this signal was lost during error trials (P > 0.1).
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Fig. 9. DPC coding in hit vs. error trials. Z-score distributions [P(zjclass)] for
hit (Left) and error trials (Right) for different subsets of neurons. Z-scores
indicate normalized differences between responses to different classes, ac-
cumulated across cells and time bins. (A) Z-scores based on the responses of
P1 coding neurons. Trace colors correspond to the classes illustrated at the
top. The strong selectivity observed during hit trials (Left, P < 0.01, ROC test)
disappeared in error trials (Right, P > 0.1). (B–E) Z-scores based on the re-
sponses of class-selective. In hit trials (Left), all z-score distributions from the
preferred class were statistically different from the rest (P < 0.01), and no
statistical differences were found between the distributions of nonpreferred
classes (P > 0.1). In error trials (Right), the distributions were statistically
different (P < 0.05) for classes with different decision outcome as the pre-
ferred class (P2 ≠ P1 in c1 and c4 coding neurons; P2 = P1 in c2 and c3 coding
neurons) but were the same for classes with the same decision outcome as
the preferred class (P > 0.1). (F) Z-scores based on the responses of decision-
selective neurons. Z-score distributions are significantly different (P < 0.01)
between P2 = P1 vs. P2 ≠ P1 classes during both hit (Left) and error trials
(Right). The response distributions show a switch in the sign of the z-score as
a result of a switch (correct–incorrect) in the decision outcome.
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In the case of class-selective coding, we found that during hit
trials (Fig. 9 B–E, Left) the z-score distribution for the preferred
class was always statistically different from the distributions for the
nonpreferred ones (P < 0.01, ROC test), and there was no statistical
difference between the three distributions associated with the
nonpreferred classes (P > 0.1, ROC test). In contrast, during error
trials (Fig. 9 B–E, Right), we found that the class selectivity dis-
appeared, but did so in a particular way. In trials in which class c was
presented and was erroneously judged, the cells that preferred class
c fired significantly less than usual (P < 0.01; Fig. 9 B–E, Right; note
bumps on the left side, z < 0, for responses to each preferred class).
Conversely, during those error trials in which the outcome was the
opposite of the one normally associated with c, the neurons with
preferred classes consistent with that opposite outcome fired more
than usual (P < 0.05; Fig. 9 B–E, Right; note bumps on the right
side, z > 0, for responses to classes with opposite outcomes). For
example, the neurons selective for class c1, which is consistent with
P2 = P1, responded weakly (negative z) during errors in which c1
was presented (Fig. 9B, Right, red trace); however, the same cells
responded strongly (positive z) during errors in which classes c2 and
c3, which are consistent with P2 ≠ P1, were presented (Fig. 9B,
Right, green and orange traces).
This type of response inversion is seen in the examples displayed

in Fig. 6C and Fig. S4 B and C. A similar effect was reported for
false alarms during a somatosensory detection task (18). To further
quantify this phenomenon, we constructed a response template (18)
for each class-selective type, based on hits only and time bins in
which each participating neuron coded the preferred class for at
least 400 ms (eight time bins of 200 ms displaced every 50 ms, n =
282; ref. 18). The resulting template represents the typical re-
sponse profile seen over time during correct discriminations. Once
obtained, we then calculated its frequency of occurrence in error
trials. The response template was found in only 9% of the error
trials of the preferred class and in 7% of the error trials of the class
with the same decision outcome as the preferred one. However,
remarkably, we found a much higher percentage of template oc-
currences in error trials in which the complementary classes (i.e.,
those with opposite outcomes) were presented (c2 and c3 for the
example neuron of Fig. 6C). In error trials in which the pattern P2
was confounded (c3 in Fig. 6C), the template frequency was 43%,
whereas in trials in which the P1 pattern was confounded (c2 in Fig.
6C) the number was 47%. Thus, the class-selective neurons often
confounded the temporal patterns held in working memory in a way
that mimicked the monkey’s mistakes.

DPC Decision Coding During Hit and Error Trials. In the case of de-
cision coding, we found that the z-score distributions showed
significant differences (P < 0.01) between match (P2 = P1, c1 and
c4) vs. nonmatch (P2 ≠ P1, c2 and c3) classes during both hit (Fig.
9F, Left) and error trials (Fig. 9F, Right). However, the response
distributions switched their z-score signs as a result of the change in
decision outcome (correct vs. incorrect, or left vs. right choices). In
this case we computed a population choice probability index (CPI)
to compare the distributions for hit vs. error trials in each class and
found that the CPI values were similarly high for all classes (c1:
0.76,; c2: 0.79, c3: 0.77, and c4: 0.79; P < 0.01, ROC test). In Fig.
S6D we combined the z-score values for pairs of classes associated
with the same decision outcome (c1–c4 for P2 = P1and c2–c3 for
P2 ≠ P1) and found significant CPIs of 0.76 when P2 = P1 (P <
0.01) and 0.77 when P2 ≠ P1 (P < 0.01). Thus, the two decisions
were represented with equal fidelity. Interestingly, the same effects
were found for partial decision neurons (Fig. S6E), for which the
CPIs were 0.71 when P2 = P1 and 0.70 when P2 ≠ P1. The coding
dynamics in hit and error trials were similar whether the neurons
coded the decision fully or partially.
To determine how the decision signal unfolded over time, we

analyzed decision coding neurons (n = 314) with at least 1 s of
significant activity (20 time bins of 200 ms displaced every 50 ms)

during hit and error trials. This decision signal was evident during
the delay between P2 and pu (Fig. S7 A and B). Hit and error
z-scores became significantly separated (Fig. S7 A and B, dashed
line, P < 0.05; ROC test) from each other 400 ms after the be-
ginning of P2 for P2 = P1 and P2 ≠ P1 classes. In terms of choice
probability, the CPI became significant right after those points
(CPI = 0.67, P < 0.05, ROC test; Fig. S7 B and D) and remained so
thereafter (CPI = 0.82, P < 0.01; Fig. S7E). This suggests that the
neuronal correlate of the choice in DPC emerged during the
middle of P2 and continued until the end of the trial.

Discussion
The experiments described above were designed to address the
following question: What are the neural codes that allow the
discrimination of temporally structured vibrotactile patterns of
equal mean frequency? To answer it, we recorded neuronal ac-
tivity in S1 and DPC while trained monkeys performed the
TPDT. Note that we do not mean to imply that the neuronal
activity from these two cortical areas is sufficient for discrimi-
nation; rather, the idea is simply that the neuronal activity
studied could serve to identify the codes associated with diverse
cognitive components of the task and understand how in-
formation about temporal patterns is represented and trans-
formed as it flows from S1 to DPC. The task design allowed us to
relate neuronal activity to perceptual discrimination perfor-
mance and to investigate how neural circuits generalize, because
although the two stimulus patterns to be compared always had
equal mean frequency, a wide range of frequencies was used
across trials. Indeed, we found a subset of DPC neurons that
were selective for specific combinations of stimulus patterns, in
effect implementing a categorical code from which the percep-
tual judgment (“same” or “different”) can be easily read out.
These cells were abundant, their responses were abstract in that
they were highly invariant to mean stimulus frequency, their
activity was strongly task-dependent, and their response fluctu-
ations across trials were highly predictive of behavior. Crucially,
unlike the decision-related neurons in DPC, which encoded
the monkey’s choice in essentially a binary way, the categorical
neurons were highly informative about both the stimulus pat-
terns presented in each trial and the monkey’s decision—and
from a computational point of view, although their existence
seems logical, it was by no means guaranteed, nor absolutely
necessary. In fact, we identified these cells by exploring a wide
variety of code formats for representing the different elements of
the TPDT. We discuss this below, first for S1 and then for DPC.
For an observer, the overall activity evoked in S1 by each

stimulus pattern (1 s) was useless for discrimination, because the
mean firing rate was essentially identical for P1 and P2, and for E
and G patterns. Instead, the observer trying to infer the identity
of a stimulus pattern had to consider the firing rate at shorter
periods of time. We found that this strategy was most effective
for identifying pattern G vs. pattern E when using a time window
of ∼200 ms. Here, the temporal code is not defined in terms of
the precision of the neuronal spike interval sequences, but on a
critical, short time window that captured in the firing rate fluc-
tuations, the higher amount of information of the temporal
stimulus pattern. This window maximized both the amount of
information conveyed about pattern identity and the percentage
of S1 neurons with significant information and represents a
plausible time period for neuronal integration (7). Also, from a
methodological point of view, it allowed us to use identical
methods and tests for analyzing the data from S1 and DPC, so
the results could be directly comparable. Regarding this point, it
becomes important to discuss the role that a temporal code
could play in the context of this task.
A temporal neural code refers to situations in which precise

spike timing or very fast firing rate fluctuations carry information
(19, 20). Studies in subcortical areas and sensory cortices have
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reported that spike timing may add significant information to that
carried by spike counts alone (21, 22). Although temporal codes
have the inherent capacity to convey more information than spikes
integrated over long intervals, and some studies suggest that neural
synchrony could play a role in perceptual experiences (23, 24), firing
rate codes have proved to be significantly correlated with animals’
psychophysical performance in multiple tasks (17). In the case of
vibrotactile stimuli, it was initially thought that frequency discrimi-
nation would rely on a neural mechanism capable of reading out
periodic interspike intervals (5), because periodic stimuli evoke
strongly periodic spike trains in S1 (5–8). However, no relationship
was found between variations in periodicity in S1 and psychophys-
ical performance in single trials (6, 8). Furthermore, in S1 itself,
periodicity diminishes appreciably from area 3b to area 1 and es-
sentially vanishes in the secondary somatosensory cortex (S2; ref. 8)
and further downstream (1–3, 13). In contrast, during VFDT, the
firing rate of S1 neurons computed over intervals of several hundred
milliseconds already encodes stimulus frequency and is directly as-
sociated with the animal’s psychophysical performance (6, 8).
In the TPDT used here, we removed the most extreme version

of the firing rate code by presenting pairs of stimuli with equal
mean frequency. In this case, the optimal time window for dis-
criminating the stimulus patterns with a single scalar quantity
was much shorter than the full stimulation window (1 s), but still
much longer than the typical time scale of a temporal code.
Consistent with previous results (6, 8, 13), when the same stimuli

were delivered but the animal knew in advance which button to
press for a reward (light control task), the S1 responses were no
different from during active discrimination. Also, S1 responses were
present only during the stimulation periods, and we did not find any
differences in stimulus coding between correct and error trials.
Thus, S1 seems mainly associated with faithfully coding the stimulus
patterns, but not other, more cognitive components of the task, such
as information stored in working memory or the animals’ decisions.
However, evidence indicates that the S1 output is necessary for
igniting or gating the activity of downstream circuits where, by
successive transformations, the subject’s choices are eventually
generated (2, 6, 8, 13).
In contrast, the DPC neurons coded all of the relevant task

components of the TPDT: the stimuli, the P1 information that had
to be remembered, and the decision. In addition, however, they
prominently represented specific combinations of stimuli, thus
generating an intermediate, more abstract categorical code. Im-
portantly, though, most DPC neurons coded more than one variable
(mixed selectivity; ref. 25). The DPC responses began during P1
with a coding latency largely delayed relative to that of S1. This
suggests that a large number of circuits between S1 and DPC are
involved in this task. In fact, S1 (area 3b) does not project directly to
DPC. Information from S1 (area 3b) could be routed via successive
relays in the somatosensory pathway (areas 1 and 2), going through
the more central somatosensory circuits (S2 and areas 5a and 7b of
the posterior parietal cortex), which then connect with DPC and
other frontal lobe circuits (26). A similar hierarchical scheme was
proposed for the vibrotactile detection and discrimination tasks (13,
27). However, the coding latencies for the amplitude and VFDT
were shorter than for the TPDT (13, 27). This could be not only
because of differences in the stimuli themselves, but also because
the different tasks may effectively require different time windows
for temporal integration (7).
A notable feature of the activity recorded in DPC is that P1

coding was maintained during the working memory period between
P1 and P2, ending by the middle of P2, just before the emergence of
class and decision coding. Recordings in DPC and other frontal
lobe circuits have demonstrated similar memory-related activity
coding for stimulus frequency during a VFDT with a similar
structure, in which two stimuli are presented sequentially (1–3, 13,
28, 29). Neural correlates of working memory have also been
reported with match-to-sample tasks in related cortical circuits (30,

31). This suggests that, in general, these circuits have the capacity to
maintain sensory-related activity during working memory, but it is
unclear how such a general computational process, applicable to a
wide range of stimuli, takes place in DPC, or how the stored in-
formation is routed to DPC. Clearly, the memory-related activity
arises only when it is necessary, because the responses coding for P1
disappeared during the light control task, when the same stimulus
patterns were delivered but the animal knew the correct answer in
advance. Furthermore, for most DPC neurons, the memory-related
response was independent of mean stimulus frequency, so it coded
the identity of the stimulus pattern in a frequency-invariant, and
thus somewhat abstract, format. Interestingly, although initially
there was a strong overrepresentation of pattern G during P1, this
bias gradually diminished over the course of the delay between P1
and P2, with nearly equal numbers of neurons coding patterns E
and G at the end. Such equalization may be useful for subtracting
common noise and increasing coding efficiency (32, 33). In any case,
this shows, together with the frequency invariance mentioned
above, that the sustained, memory-related activity is not just a
literal copy of the activity evoked in S1 but rather a more heavily
processed signal that may be transformed via divisive normalization
or other circuit operations. These properties provide important
constraints for future computational models of delay period activity.
A large proportion of the DPC neurons were class-selective, that

is, they responded to one combination of P1 and P2 patterns but not
to the others. This is interesting given that the core of the task is
precisely the comparison of the current stimulus pattern P2 against
the stored trace of the past pattern P1. That the class-selective
neurons evenly coded the four relevant classes seems logical but was
by no means a foregone conclusion. Other combinations were
possible, such as neurons with graded selectivities across the four
classes, or neurons with one nonpreferred class and three preferred
ones, and so on. Also, P2 coding itself was negligible. The class
selectivity could have been present only for specific mean fre-
quencies, or over narrow frequency ranges, or it could have been
biased toward particular classes (say, those corresponding to the
“same” outcome), but this was not the case either; the class-selec-
tive neurons preferred the four possible classes equally, without
bias, and were largely insensitive to mean stimulus frequency. The
circuit seems to have arrived at a particularly elegant solution for
performing the TPDT. Furthermore, we found that, in error trials,
two complementary things happened: First, the neurons selective
for the true, presented class fired less than usual, and second, the
neurons selective for the two competing classes, that is, those
leading to the opposite outcome, fired more than usual. Not only
that, during errors those “competing” neurons showed a high
probability of responding with the same temporal profile of activity
(template) identified in hit trials. Thus, the activity of class-selective
neurons not only predicted the occurrence of an incorrect behav-
ioral response, but also provided important insight as to how such
misjudgment might have been generated—namely, by the con-
junction of two effects, too little activity in support of the correct
pattern combination and too much activity in support of the erro-
neous combinations. This demonstrates that the perceptual evalu-
ation depends on more than two identified neuronal types, four in
our case, that jointly contribute to error trials. This type of coding
represents an intermediate step linking stimulus selectivity and
perceptual decision; it has elements of both the sensory input
(which is nontrivial, given that the selectivity is for two patterns
presented sequentially) and the binary motor report. As for P1
coding neurons, during the light control task the class-selective ac-
tivity disappeared, so it is generated in the appropriate cognitive
context only. Whether class coding arises locally in DPC or is im-
ported from another area is unknown. In the case of the VFDT, the
relevant decision signal is likely to emerge initially in the secondary
somatosensory cortex, with different strengths and latencies across
cells (13). This might also be the case for the TPDT. It is also
possible that analogous categorical activity arises in DPC with
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similar tasks based on other modalities, but this is difficult to assess
given the lack of comparable studies in the literature.
During the postponed decision period, the percentages of

class- and decision-coding neurons were very similar. The pres-
ence of sensory information during the postdiscrimination period
might be important in case the motor report of the decision
needs to be updated (7). These results fit well with the idea that
the preparatory activity observed in areas of the frontal lobe
during delay periods represents not only the planning of motor
actions (34, 35) but also the information on which those motor
plans are based (36, 37). The decision neurons in DPC encoded
the monkey’s choice with essentially equal strength during cor-
rect and error trials. However, their differential activation not
only was associated with minimal variations in arm movements
(SI Materials and Methods) but also vanished the during the light
control task. Therefore, their activity during the TPDT is not
trivially related to a motor action; either it reflects the final result
of the comparison between patterns or it represents a motor plan
that is fully gated by the behavioral context of the task. Previous
studies have shown similar results (2, 3).
Notably, we also found that a considerable percentage of

neurons continued coding the stimulus class or the decision
(“same” or “different”) after the monkey had emitted its motor
response. Again, this activity did not occur during the light
control task. This suggests that the DPC also maintains in-
formation that may be necessary to evaluate the consequences or
the value of the decision report (38). It is possible that the DPC
plays a role in evaluating choice outcomes, which can serve to

learn, in general, and to adapt future decisions according to
behavioral context and environmental demands.
In summary, the neuronal activity studied served to identify

multiple neural codes that participate in a perceptual evaluation
process, including an intermediate categorical one that is partially
sensory and partially choice-related. It also served to determine how
information about temporal patterns is represented and trans-
formed in S1 vs. DPC. Whether the S1 representation is gradually
or abruptly transformed in its transit to DPC, and which repre-
sentations are held in working memory, are open questions (13, 27)
for future experiments and computational analyses.

Materials and Methods
Monkeys were trained to report whether the temporal structure of two
vibrotactile stimuli of equal frequency was the same or different (SI Materials
and Methods). Neuronal recordings were obtained in S1 and DPC while the
monkeys performed the task (SI Materials and Methods). Coding of trials
class as function of time was calculated from S1 and DPC neurons (SI Ma-
terials and Methods). Information and response latencies for each neuron
are described in SI Materials and Methods. All protocols were approved by
the Institutional Animal Care and Use Committee of the Instituto de Fisio-
logía Celular, Universidad Nacional Autónoma de México. Monkeys were
handled according to the institutional standards of the National Institutes of
Health and Society for Neuroscience.
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